8 research outputs found

    Towards Automatic Honey Bee Flower-Patch Assays with Paint Marking Re-Identification

    Full text link
    In this paper, we show that paint markings are a feasible approach to automatize the analysis of behavioral assays involving honey bees in the field where marking has to be as lightweight as possible. We contribute a novel dataset for bees re-identification with paint-markings with 4392 images and 27 identities. Contrastive learning with a ResNet backbone and triplet loss led to identity representation features with almost perfect recognition in closed setting where identities are known in advance. Diverse experiments evaluate the capability to generalize to separate IDs, and show the impact of using different body parts for identification, such as using the unmarked abdomen only. In addition, we show the potential to fully automate the visit detection and provide preliminary results of compute time for future real-time deployment in the field on an edge device.Comment: Paper 17, workshop "CV4Animals: Computer Vision for Animal Behavior Tracking and Modeling", in conjunction with Computer Vision and Pattern Recognition (CVPR 2023), June 18, 2023, Vancouver, Canad

    Code, recordings, validations and Regions of interest

    No full text
    Here is the code as well as the the recordings, validations and regions of interest used for the development of the experiment presented in the journal article "Species-specific audio detection: A comparison of three template-based classification algorithms using random forests"

    Audio segmentation using Flattened Local Trimmed Range for ecological acoustic space analysis

    No full text
    The acoustic space in a given environment is filled with footprints arising from three processes: biophony, geophony and anthrophony. Bioacoustic research using passive acoustic sensors can result in thousands of recordings. An important component of processing these recordings is to automate signal detection. In this paper, we describe a new spectrogram-based approach for extracting individual audio events. Spectrogram-based audio event detection (AED) relies on separating the spectrogram into background (i.e., noise) and foreground (i.e., signal) classes using a threshold such as a global threshold, a per-band threshold, or one given by a classifier. These methods are either too sensitive to noise, designed for an individual species, or require prior training data. Our goal is to develop an algorithm that is not sensitive to noise, does not need any prior training data and works with any type of audio event. To do this, we propose: (1) a spectrogram filtering method, the Flattened Local Trimmed Range (FLTR) method, which models the spectrogram as a mixture of stationary and non-stationary energy processes and mitigates the effect of the stationary processes, and (2) an unsupervised algorithm that uses the filter to detect audio events. We measured the performance of the algorithm using a set of six thoroughly validated audio recordings and obtained a sensitivity of 94% and a positive predictive value of 89%. These sensitivity and positive predictive values are very high, given that the validated recordings are diverse and obtained from field conditions. The algorithm was then used to extract audio events in three datasets. Features of these audio events were plotted and showed the unique aspects of the three acoustic communities

    Species-specific audio detection: a comparison of three template-based detection algorithms using random forests

    No full text
    We developed a web-based cloud-hosted system that allow users to archive, listen, visualize, and annotate recordings. The system also provides tools to convert these annotations into datasets that can be used to train a computer to detect the presence or absence of a species. The algorithm used by the system was selected after comparing the accuracy and efficiency of three variants of a template-based detection. The algorithm computes a similarity vector by comparing a template of a species call with time increments across the spectrogram. Statistical features are extracted from this vector and used as input for a Random Forest classifier that predicts presence or absence of the species in the recording. The fastest algorithm variant had the highest average accuracy and specificity; therefore, it was implemented in the ARBIMON web-based system

    Automated classification of bird and amphibian calls using machine learning: A comparison of methods

    No full text
    We compared the ability of three machine learning algorithms (linear discriminant analysis, decision tree, and support vector machines) to automate the classification of calls of nine frogs and three bird species. In addition, we tested two ways of characterizing each call to train/test the system. Calls were characterized with four standard call variables (minimum and maximum frequencies, call duration and maximum power) or eleven variables that included three standard call variables (minimum and maximum frequencies, call duration) and a coarse representation of call structure (frequency of maximum power in eight segments of the call). A total of 10,061 isolated calls were used to train/test the system. The average true positive rates for the three methods were: 94.95% for support vector machine (0.94% average false positive rate), 89.20% for decision tree (1.25% average false positive rate) and 71.45% for linear discriminant analysis (1.98% average false positive rate). There was no statistical difference in classification accuracy based on 4 or 11 call variables, but this efficient data reduction technique in conjunction with the high classification accuracy of the SVM is a promising combination for automated species identification by sound. By combining automated digital recording systems with our automated classification technique, we can greatly increase the temporal and spatial coverage of biodiversity data collection

    Automated classification of bird and amphibian calls using machine learning: A comparison of methods

    No full text
    We compared the ability of three machine learning algorithms (linear discriminant analysis, decision tree, and support vector machines) to automate the classification of calls of nine frogs and three bird species. In addition, we tested two ways of characterizing each call to train/test the system. Calls were characterized with four standard call variables (minimum and maximum frequencies, call duration and maximum power) or eleven variables that included three standard call variables (minimum and maximum frequencies, call duration) and a coarse representation of call structure (frequency of maximum power in eight segments of the call). A total of 10,061 isolated calls were used to train/test the system. The average true positive rates for the three methods were: 94.95% for support vector machine (0.94% average false positive rate), 89.20% for decision tree (1.25% average false positive rate) and 71.45% for linear discriminant analysis (1.98% average false positive rate). There was no statistical difference in classification accuracy based on 4 or 11 call variables, but this efficient data reduction technique in conjunction with the high classification accuracy of the SVM is a promising combination for automated species identification by sound. By combining automated digital recording systems with our automated classification technique, we can greatly increase the temporal and spatial coverage of biodiversity data collection
    corecore